http://ansinet.com/itj ISSN 1812-5638

INFORMATION
TECHNOLOGY JOURNAL

ANSIlzet

Asian Network for Scientific Information
308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Information Technology Journal 7 (7). 983-991, 2008
ISSN 1812-5638
© 2008 Asian Network for Scientific Information

A New Classification for Architecture of Parallel Databases

Pushpa Rani Suri and Sudesh Rani
Department of Computer Science and Applications, Kurukshetra University,
Kurukshetra-136119, Haryana, India

Abstract: Exploiting parallelism is the key to building high performance database systems. Several approaches
to building database systems that support both inter and intra-query parallelism have been proposed. These
approaches can be classified as either Shared Nothung (SN) or Shared Everything (SE). Although the SN
approach is highly scalable, it requires complete data partitioning and tuning to achieve good performance
whereas the SE approach suffers from non scalability. We propose a scalable sharing approach which combimes
the advantages of both SN and SE. Requirements to parallel database systems are formulated, which serve as
criteria for comparing various architectures. We analyze the performance of our approach and compare with that
of a SN and SE system. We find that our approach performs better than that of SN and SE approaches.

Key words: Parallel databases, shared-nothing, shared-everything, distributed shared memory

INTRODUCTION

The rise m the complexity of databases m terms of
physical size, query complexity and query volume
demands enormous amount of processing power
which can only be satisfied using parallel systems
(Pirahesh et af., 1990). Parallel system architectures range
between two extremes, the shared-nothing and the
shared-memory architectures. Both architectures have
their pros and cons. The SN architecture is suitable to
large scalable systems but load balancing requires
complex data partitioning and assignment strategies. In
SE architecture the global accessibility of data allows
uniform utilization of resources. However, the uniformity
of a SE system makes communication a bottleneck which
hinders the scalability of such a system. Distributed
Shared Memory (DSM) (Carter et al, 1991, Li and
Hudak, 1989) can be used to overcome the drawbacks of
both SE and SN. In a DSM system, memory 1s physically
distributed among the processors. When data is
partitioned among processors, a DSM system behaves as
a SN system. On the other hand the uniform view of the
memory allows idle processors to work on non-local data
and better utilize the processing resources in the system.
However, it is not just enough to have a scalable
architecture to build a scalable database systemn with the
desired features. The database system bult top in the
architecture should be able to utilize the architecture
properly. In order to achieve this, we propose the
scalable sharing (SS) approach.

The key to the 5SS approach 1s to recogmze the ability
of the DSM architecture to behave both as a SN system
and a SE system. Thus, the database design should be
able to handle the critical issues in both SN and SE
systems. In SN systems it 1s data partitioning and in SE
systems it is scheduling. Tn SS system design both issues
become important and thus have to be designed to take
advantage of the capabilities provided by each. In this
paper we present the design of a SS system with respect
to the underlying architecture, data partitioning and
scheduling.

Our objective is to build a database system that
captures the advantages of both SN and SE approaches.
From the discussion in the literature of Stonebraker (1986)
we know that the main drawback of sharing is scalability.
We identify the following guidelines to build a scalable
systermn:

» Eliminate central that can become
bottlenecks

» Mimimize communication and thus avoid making the
interconnect a bottleneck

» Utilize medular, hierarchical coupling that will allow
larger systems to be built from smaller subsystems

TEsOuUrces

Our approach to satisfying these guidelines to
scalability contains three components:

» The underlymg hardware architecture
+ Data partitioning
» Scheduling

Corresponding Author: Pushpa Rani Suri, Department of Computer Science and Applications, Kurukshetra University,
Kurukshetra-136119, Haryana, India Tel: 09416352227

Inform. Technol. J., 7 (7): 983-991, 2008

We will describe previous work related to each of
these components and the innovations and extensions we
propose.

ARCHITECTURE

Parallel system architectures range between two
extremes, the Shared-Nothing (SN) and the Shared-
Everything (SE) architectwres. In the shared-nothing
approach (Fig. 1), each processor has exclusive access to
1ts main memory and disk umit(s). Thus, each nede can be
viewed as a local site (with its own database and
software). In addition, shared-nothing architecture has
three main virtues: cost, extensibility and availability. On
the other hand, it suffers from higher complexity and
(potential) load balancing problems.

Shared-nothing architectures minimize interference
by minimizing resource sharing. They also exploit
commodity processors and memory without needing an
mcredibly powerful interconnection network. As Fig. 1
suggests, the other architectures move large quantities of
data through the interconnection network. The shared-
nothing design moves only questions and answers
through the network. Raw memory accesses and raw disk
accesses are performed locally in a processor and only the
filtered (reduced) data is passed to the client program. The
SN architecture places the burden of ensuring on how the
data 1s split and assigned to nodes.

Examples of shared-nothing parallel database
systems include the Teradata’s DBC and Tandem’s
non- stop SQL products as well as a number of
prototypes such as BUBBA (Boral ef af., 1990), GAMMA
(DeWitt et al, 1990), PRISMA (Apers et al, 1992) and
ARBRE (Lorie ef al., 1989).

In the Shared-Everything (SE) approach (Fig. 2), any
processor has access to any memory module or disk umit
through a fast interconnect (e.g., a high-speed bus or a

N

Fig. 1: Shared-nothing architecture

984

cross-bar switch). Several new mainframe designs such as
the TBM3090 Bull's DPS8 and symmetric
multiprocessors such as Sequent and Encore, follow this
approach. Shared-memory has two strong advantages:
simplicity and load balancing. These are offset by three
problems: cost, limited extensibility and low availability.

In a SE system the data repositories (memory and/or
disks) and processors are independent of each other and
are comnected through an interconnection network. In a
SE system all processing nodes are uniform i.e. a given
task can be processed by any processor in the system.
This umformity allows a high degree of flexibility in
scheduling tasks and amount of parallelism employed for
transactions. However, the data required by a task has to
be moved between the data repositories and the
processors through the intercomnect. This makes the
interconnect a central resource and thus a bottleneck to
scalability.

Examples of shared-everything parallel database
systems include XPRS (Stonebraker et af., 1988), DBS3
(Bergsten et al, 1991) and Volcano (Graefe, 1990). All the
shared-memory commercial products (e.g., Ingres and
Oracle) today exploit inter-query parallelism only (1.e., no
intra-query parallelism).

The SN and SE approaches represent the extremes
of spectrum of possible approaches. We propose a

P9
cflc

Fig. 2: Shared-everything architecture

or

Fig. 3: A scalable sharing architecture

Inform. Technol. J., 7 (7): 983-991, 2008

Distributed Shared Memory (DSM) based architecture
that provides the flexibility of a SE system and the
scalability of a SN system (Fig. 3). In Bellew et al. (1990),
present a DSM based architecture. However, the thrust of
their work was efficient coherence maintenance and
concurrency control. DSM was also used in Shatdal and
Naughton (1993) to enhance join strategies to efficiently
handle data skew. However, these studies did not examine
the impact of architectural assumptions on the scalability
of the database system.

The DSM architecture we propose consists of
interconnected processors, each with a large amount of
main memory and a disk. The main difference between this
architecture and SN architecture 1s that the mterconnect
supports a shared address-space thus allowing a
processor to access data wrespective of its location. The
DSM architecture differs from the SE architecture in that
all nodes are not identical with respect to the cost of
accessing a particular data item. The architecture we
propose is an extension to existing scalable, shared-
memory multiprocessor architectures. The architecture
provides shared-memory. In hardware and not as a
software abstraction built on top of a message-passing
environment such as those in (Carter et ol., 1991; Li and
Hudak, 1989). The reason for choosing a hardware
unplementation of DSM, despite the ease of
inplementation of the software based DSM, 1s the higher
cost of sharing a software based DSM. The nodes in this
architecture are mtercommected through a ring. The
architectire 15 scaled, not by adding more nodes to a
single ring, but by hierarchically coupling such nings, 1.e.,
rings of nodes are connected through a higher level ring
(Fig. 3).

Before we discuss how to build a scalable database
system on the proposed hardware architecture, we
have to recognize that the SN mode of functioning is
acceptable as long as all the nodes are busy processing
assipned tasks that access data local to the nodes.
However, the scheduling flexibility of a SE system 1s
needed once the system has a mix of idle and busy nodes
at which tine both tasks and data may have to be
moved from busy to idle nodes. We call this approach to
sharing.

SCALABLE SHARING

Data partitioning: For the database system to be able to
behave as a SN system we have to partition the data
among the processors. Data partitioning (declustering) is
a simple and effective way of achieving both mter and
intra-query parallelism.

985

Data partitioning has two phases: Logical and physical
partitioning. Logical partitioming divides a relation or a
class into a collection of disjoint subsets of tuples or
object respectively. Physical partitioming maps these
subsets to processors.

Logical partitioning: A relation or a class can be
declustered by applying a partitioning function (eg.,
hash, range) to an attribute to decide the mapping
between the tuple and a fragment (DeWitt and Gray, 1992;
Boral et al., 1990). However, when a single attribute is
used for the declustering, only queries that involve the
declustering attribute gain the full benefits of the available
parallelism. This problem cen be overcome by using multi-
attribute declustering (Ghandeharizaeh et af, 1992,
Liet al, 1992). First, all, the attributes to be used in the
declustering are identified. Then the domain of values for
each such attribute 1s divided into a set of sum-domains
based on their attribute values. The number of sub-
domains along each dimension is dependent on the
degree of parallelism that is desired Fro example the
MAGIC declustering method (Ghandehan zaeh et al., 1992)
applies range partitioning to each of the attributes
involved in the declustering to create a multi-attribute grid
structure.

The desired degree of parallelism, p, can be
determined when followmg cost model 1s assumed
(Wilschut et al., 1992; Ghandeharizaeh et af., 1992):

R - Ct TavE/PJrPCP (1)

P o= AT L/C,))
where, R 1s the response time for a query, C, 1s the cost
of processing a tuple, T, is the average number of
tuples accessed by a query and C, is the overhead per
unit of parallelism. Then the degree of parallelism that
gives response obtained by
differentiating Eq. 1 to give Eq. 2. Thus Popt serves as a
lower bound for the number of sub-domains in a
dimension. In the MAGIC declustering strategy the
number of ranges in a dimension can be greater than or
equal to F_,.. In our approach we divide each dimension 1
into exactly P, ranges.

least time can be

Physical partitioning: The result of logical partitioning
is a per relation multi-dimensional grid of fragments,
each containing a disjoint subset of the relation’s
tuples. Each fragment is made up of one or more pages.
The physical partitioming strategy maps these
fragments to the available nodes in the system with an

Inform. Technol. J., 7 (7): 983-991, 2008

objective to guarantee the desired degree of parallelism
along each dimension. The grid structure, together with
the mapping information, form declustering directory. The
simplest such mappmg would be to assign each
fragment in a relation to a different and repeat the process
for eachrelation. However, the case where the number
of fragments 1s greater than the number of processors this
strategy will not work and a more complex assignment
strategy 18 required. Ghandeharizaeh et al. (1992)
present a set of complex heuristics to assign the
fragments to processors.

We propose a simple algorithm, the diagonal
assignment strategy, for assigning fragments
processors that does not make use of any heuristics. The
diagonal assignment strategy assigns fragments to a
subset of available nodes m the system. The diagenal
assignment strategy groups fragments into slices and
assigns each slice to a different node. This assignment
strategy guarantees the same degree of parallelism for any
query accessing a relation and requires at most as many
processors as max(P,). For example, assume that the
declustering is on two attributes and P, for both
dimensions 1s the same (P), 1.e., the result of logical
partitioning 1s a two dimensional, PxP grid. The diagonal
assignment strategy creates P slices, each with P
fragments in it. If the fragments in the grid are numbered
1,2,..................., PP in a row major order then, the
number 1f 1th slice can be determmned using the equation:

to

Slice, = ((iF1) P+ 1+ (P+1)) mod n (3)

Forall¥je[0,P),;1<1<P,n=PxP

Figure 4 shows the assignment of a 5 grid of
fragments to nodes. The numbers in the boxes show the
node to which a particular fragment 1s assigned.

As shown in Fig. 4, our assignment strategy uses
only a subset of nodes in the system to assign the
fragments of a given relation and fragments of different
relation are assigned to different subsets of nodes i the
system in a round-robin manner. We use a simple example
to illustrate the difference between owr strategy and the
full-declustering strategy. Let us assume that there are 6
relations the database, each with a 3%3 grid (9 fragments).

Let us assume that the system has 9 nodes. Now, in
a full- declustering strategy each fragment of each relation
would be assigned to one processor which would result
n 6 fragments per node (1 fragment/ relation=6 relations).
Using owr strategy, each relation’s grid would be split
across a subst of three nodes. Thus node 1-3 get relation
1 and 4, nodes 4-6 get relations 2 and 5 and nodes 7-9 get
relations 3 and 6. once again each node gets 6 fragments

986

Fig. 4: Diagonal-assignment for a 3%3 grid

(3 fragments/relationx2 relations), the difference being
that a given relation 1s not fragmented across all nodes,
but only a subset of the available nodes. Thus, intuitively
the performance of the subset assignment strategy should
be very smmilar to that of full-declustering strategy.
However, our strategy greatly sumplifies the process of
assigning fragments to nodes in the system

Another problem in physical partitioning is the
presence of data skew. In SN systems the basic
technique for skew avoidance 1s to tune the assignment
of fragments to processors (Hua and Lee, 1991,
Omiecinski and Lin, 1992) such that each node gets
roughly the same number of fragments. These strategies
rae static in nature. Our approach to handling data skew
is not to handle it at query execution time (static) but to
handle it at query execution time (dynamic), which is
explained further.

In the case of high comrelation between the
partitioning attributes, i. e., when a majority of the data in
fragments along a diagonal in the declustering gnid, the
diagonal assignment strategy could adversely affect the
performance, despite the best scheduling efforts. To
overcome this deficiency of the diagonal assignment
strategy, we could use the magic squares strategy which
guarantees that even diagonal elements get assigned to
different processors (Zhiyong et al., 1992). This property
of the Magic Squares strategy allows it to trivially handle
the presence of data skew due to correlation between
attributes.

Scheduling: Scheduling strategies in SN and SE systems
are known as data-affinity and load-balancing scheduling
respectively. In SN systems, queries are decomposed mto
sub-queries based on the degree of declustering of the
data being accessed. The sub-queries are scheduled to be
processed on nodes that store the corresponding
fragments. In SE systems, queries are decomposed into
sub-queries based on the degree of parallelism deemed

Inform. Technol. J., 7 (7): 983-991, 2008

optimal to execute the query. Since all processors are
uniform in a SE system, the sub-queries can be executed
OI1 &Iy Processor.

However, none of these scheduling strategies
make the best use of the database architecture
presented earlier. The SN style of scheduling 1s
susceptible to data skew whereas the SE style of
scheduling fails to recognize the non-uniform costs of
data access in our architecture.

Owr approach to scheduling decomposes queries into
sub-queries and is processor initiated. However, owr
approach takes data-affinity into consideration and thus
15 similar to the scheduling approach presented in
(Markatos and LeBlanc, 1992).

In our scheduling approach each node has a private
work queue, similar to a SN scheduling strategy. However,
any node can access any other node’s work queue
through DSM. When a query 1s submitted to the DBMS,
the declustering directory 1s consulted to determine the
fragments that need to be accessed Based on this
information the query is decomposed into sub-queries
each of which perform the required operation on a single
fragment. Each sub-query is then placed as a work unit in
the privet work queue of the node to which the
corresponding fragment has been assigned during
physical partitioning (Fig. 5). When a processor 1s done
with processing a work unit, it attempts to get fresh work
from its private work queue, 1.e., the first priority of a
processor is to complete processing work umts that
access data local to that node. When a processor cammot
find any work assigned to it, there are two choices. One,
it can sit idle until work is assigned to it in which case the
system essentially behaves as a SN system. With the
diagonal assignment strategy the response tine would
then be constrained by the largest work unit and the
available resources would not be fully utilized. The
second choice is to let the processor try and find work
from another processor’s queue. Processing a work unit

—p
Declustering directory
1 2 3 N—ﬁﬁ‘ ~—]
Sub‘
queries

queue

1
ﬁ Private work

‘Work unit

Shared address space

Transaction generator

Fig. 5: The database model

987

assigned to a different processor involves greater
processing time because of the data movement involved
and has to taken mto consideration n deciding where the
work 1s to be obtammed from.

Based on this frame-work for scheduling we
can come up with several scheduling strategies. We
briefly discuss one such strategy here. When a processor
becomes 1dle and has no work umits in its work queue, a
work unit assigned to another processor is selected as
follows:

The work queue of the node with the most work
pending is selected. The pending work is computed
as the suni of number of pages that all the work units
1n that will access. We expect this strategy to reduce
the load on the most loaded node because the time
for processing a work unit is directly proportional to
the number of pages that the work unit accesses

The search space for a largest work queue 1s imitially
limited to those corresponding to the processor
nearest to the idle processor. This is done because
the cost of moving data between node pairs of
different distances 1s different

When a appropriate work queue 1s found, a non-
modifying work unit is obtained and the data
required to process the work unit is transparently
moved through the DSM. The reason for choosing
only non-modifying work umt is two fold. First,
meodifying transactions typically have no parallelism
that can be exploited through load-balancing that
justifies the cost of data movement. Second, no data
coherence is required when data 13 moved only for
non-modifying queries because such data can be
discarded immediately after the node finishes
processing the sub-query. We plan to use data reuse
through caching m future

Here, we have presented the design of the
components that are key to building a scalable system.
The DSM architecture we have described has no central
resowrces. The processor-disk pairs in combination with
data partitioning, eliminate the 1/0 bottleneck. The data
partitioning and data affinity scheduling together minimize
the amount of commumnication required in processing the
transactions while effectively handling load imbalances.
The low communication requirement and the hierarchical
intercormect remove the mterconnection bottleneck. Also,
the hierarchical architecture allows larger systems to be
built by interconnecting rings of nodes in a hierarchical
manner. Thus, we can see that the database architecture
described here meets the guidelines to buillding scalable
systems that we 1dentified in the beginmng.

Inform. Technol. J., 7 (7): 983-991, 2008

REQUIREMENTS FOR PARALLEL
DATABASE SYSTEMS

The criteria used m the comparison of architectures
of parallel database systems rely on the following set of
requirements (DeWitt and Gray, 1992; Stonebraker, 1986;
Valduriez, 1993):

Good scalability

High data availability

Efficient load balancing

Low cost of interprocessor exchanges

Low overheads on ensuring cache ccherence
Efficient organization of the concurrency control

Let us consider the specified criteria 1 more detail.

Scalability: System scaling is referred to as dynamic
buildup a system to adapt to a growing database size or
mcreasing performance requirements by gradually
incorporating additional processors, memory modules,
disks and other hardware components into the system. Tf
the hardware capacity of the system doubles, its
performance 1s expected to double as well. However, in
practice, a real increase in the performance is usually
much lower. For example, the scalability of the SE systems
15 limited to 20-30 processors (Valduriez, 1993). With the
further enhancement of an SE system, its performance
grows very slowly or even starts to fall (Martin et al.,
1994). This is explained by the fact that the processors
spend much time waiting for an access to the shared
resources. Hence, the scalability of any multiprocessor
system is determined by the parallelization efficiency.

The parallelization efficiency is described in terms of
two basic qualitative characteristics: speedup and scaleup
(DeWitt and Gray, 1992). The architecture of a
multiprocessor system is considered to be nicely scalable
if it demonstrates almost linear scaleup and speedup.
Linear scaleup unplies that the time spent by the system
for solving a problem 1s equal to that spent by a double
system for solving a double problem. Linear speedup
implies that a double system solves a problem twice as
fast as the original system. The main factor that worsens
the scalability of systems results from drawbacks
associated with the concurrent access of shared
resowrces by the processors.

Data availability: One of the critical characteristics of
parallel database systems is the capability of the system
to enswre a high degree of data availability under the
condition of failures of some hardware components. The
probability of a hardware failure m a one-processor

988

system is not great. However, in a system with thousands
of processor nodes, this probability increases thousand
fold. Therefore, the problem of ensuring high data
availability i multiprocessor systems 1s of pgreat
importance.

Load balancing: The balancing of the processor load 1s
one of the key problems mn ensuring high efficiency of the
parallel query processing. The DBMS should divide a
query into parallel agents and distribute them among the
processors to ensure uniform loading of all processors.
The problem of load balancing 1s especially important in
the case where partitioned parallelism is used (DeWitt and
Gray, 1992). The important factor affecting the efficiency
of the parallelization of database operations (especially,
join and sort operations) 15 the value of the skew mn data
to be processed. Tt has been shown that, in real
databases, some values of a certain attribute occur more
frequently than others (Yanms et al, 1992; Hou and
Kindred 1993). In particular, Lynch (Yanmis et af., 1992)
notes that the values of text attributes are usually
distributed in accordance with the Zipf law. Such
non-umiformity 1s said to be the attribute value skew
(Anmita et al., 1995). Lakshmi et af. (2000} showed that, in
the presence of data skew, the speedup of the parallel
execution of the join operation may be extremely low
because of an overload of some processors and
underload of others.

Interprocessor communications: If the partitioned
parallelism 1s used, the interprocessor communications in
parallel database systems can generate considerable
traffic (Valduriez, 1993). This is explained by the fact that,
upon parallel execution of the operation of joimng 2
relations, we have either to dynamically fragment anew
the original relations by the join attribute or to send the
alien tuples from one processor node to another. Both
actions are associated with sending considerable amounts
of data through the commumcation network. Therefore,
the cost of the interprocessor exchanges may critically
affect the total system performance.

Cache coherence: When a common disk pool 1s
shared by several processors, we face the so-called
cache coherence problem (Rahm, 1993). The essence of
this problem is as follows. After a transaction addresses
a disk page, the image of this page remains for some time
in the buffer associated with the given processor nede.
Hence, one processor node may revoke changes made by
the other processor node. To avoid this, any time when
the disk page 1s accessed, we need to check whether the
image of this page 1s contained in the buffer pools

Inform. Technol. J., 7 (7): 983-991, 2008

(caches) of other processor nodes and, if this takes place,
coordmmate changes produced in the caches of these
processor nodes.

Concurrency control: Another series problem for
database systems with shared disks is the support of the
global lock table (Mohan and Narang, 1992). The locking
15 one of the basic methods used for ensuring ACID
properties of the transactions. If different processor
nodes work concurrently with the same database
objects, they must have an access to the common (global)
lock table. The support of such global lock table in
multiprocessor systems without shared memory can be
associated with great overheads (Mohan and Narang,
1992).

The comparative analysis of the SE, SD and SN
architectures was done by Stonebraker and can be found
mn the classical work (Stonebraker, 1986). This analysis
showed that, from the standpoint of scaleable high-
performance database systems, the SN architecture 1s
most preferable among these three architectures.

COMPARATIVE ANALYSIS OF ARCHITECTURES
OF PARALLEL DATABASE SYSTEMS

Hear, we compare SN and 3S parallel architectures of
database systems with ow proposed approach using the
criteria formulated mentioned earlier and are graded on a
four-point basis: 0 (Unsatisfactory), 1(Satisfactory), 2
(Good) and 3 (Excellent).

Scalability: The SN architecture is characterized by the
good scalability (2 points). This is associated with the fact
that, in the case of many processor nodes, the
Interprocessor commurication network becomes a
bottleneck (Rahm, 1993; Norman et al., 1996). The SS
architectures demonstrate better scalability (3 points)
owmg to the fact that most of the communications
occur inside the rings, thus unloading the interring
network.

Data availability: The SN architecture 1s characterized
again as a good one (2 points). This is explained by the
fact that the backup copies in an SN system should be
partitioned to many nodes (Hsiao and DeWitt, 1993) in
order that to make the backup copy of a failed disk
available in the parallel mode (otherwise, there may arise
a serious disbalance in the loading). The support of the
coherence of the partitioned backup copies requires
certain overheads associated, first of all, with sending
large amounts of data through the communication
network. The SS architectures demonstrate better data

989

availability (3 points) owing to the fact that all problems
related to ensuring high data availability can efficiently be
solved at the level of separate rings.

L.oad balance: T.oad balance for the SN architecture is a
serious problem, since the SN systems are very sensitive
to the data skew (Lakshmi and Yu, 1990). Therefore, the
corresponding grade of the SN architecture 1s 0. The
hierarchical S5 architectures make it possible to get better
load balance since the load 1s balanced at two-intering
and intraring-levels. Accordingly, the SS architecture get
1 point. The best load balance among the considered
architectures 1s achieved in SE clusters, since, in addition
to the disks, the entire operative memory is available for
all processors (Valduriez, 1993).

Interprocessor communication: The high cost of
interprocessor communications is a weak point of the
SN architecture (Stonebraker, 1986; Englert et al., 1995)
(0 pomts). The S5 architectire outperform the SN
architecture i terms of this criterion since, potentially, the
intraring commumications can be implemented more
efficiently than the interring communications (Sokolinsky,
1999). Accordingly, we give 1 point S8 architecture.

Cache coherence: Cache coherence 1s a not a serious
problem for both the SN and SS architectures. Therefore,
the SN and SS architectures get the highest grade
(3 points).

Concurrency control: Concurrency control is related to
difficulties associated with the orgamzation of the
database object locking by the concurrent transactions
accessing them. Therefore, the SN architecture is the best
1n terms of this parameter (3 pownts). The SS architecture
fully inherits this featwe from the SN architecture
(also 3 points).

Conclusion: Based on the above analysis and taking into
accourt the sum of the grades for different criteria shown
in the Table 1, we may conclude that the SN architecture
in the pure form is not appropriate. However, if we take
into account the entire collection of the requirements to
parallel database systems, we can see that the SS
architecture 1s the best one.

Table 1: Comparison of architectures

w2
v

Scalability

Data availability

Load balancing

Interprocessor communications
Cache coherence

Concurrency control

Surn of points

= DO R D

<
[l B R o R PV)

Inform. Technol. J., 7 (7): 983-991, 2008

CONCLUSION

In this research we have presented a new database
architecture called SS, which offers the scalability of a SN
system and the flexibility of a SE system using DSM for
data movement. Further, on the basis of basic
requirements to parallel database systems. we have
carried out comparative analysis of SN and S8
architectures of parallel database systems. This analysis
has revealed that the SS architecture has the best
performance.

REFERENCES

Annita, NW., I. Flokstra and A M.G. Peter, 1995. Parallel
evaluation of multi-join queries. Proceedings of the
1995 ACM SIGMOD International Conference on
Meanagement of Data. May 1995, ACM Press, San
Tose, California, pp: 115-126.

Apers, P., C. Van Den Berg, I. Flokstra, P. Grefen and
M. Kersten et al., 1992. Prisma/DB: A parallel main-
memory relational DBMS. [EEE. Trans. Knowledge
Data Eng., 4: 541-554.

Bellew, M., M. Hsuand V. Tam, 1990. Update propagation
in distributed memory hierarchy. Proceedings of the
6th International Conference on Data Engineering.
TEEE. Computer Society. May 02-Sep. 02, Los
Angeles, CA, USA pp: 521-528.

Bergsten, B., M. Couprie and P. Valduriez, 1991.
Prototyping DBS3, a shared-memory parallel
database system. Proceedings of the International
Conference on Parallel and Distributed Information
Systems. April 12-June 12, Miami, Florida, TEEE
Comput. Soc., pp: 226-234.

Boral, H, W. Alexander, L. Clay, G. Copeland and
S. Sanforth et af., 1990. Prototyping bubba: A highly
parallel database system. TEEE. Trans. Knowledge
Data Eng., 2: 4-24.

Carter, IB., TK. Bennet and W. Zwaenepoel, 1991.
Implementation and performance of mumn
Proceedings of the 13th Symposium on Operating
System Principles. Oct. 13-16, ACM Press, New York,
NY, USA pp: 152-164.

DeWitt, D.J., S. Ghandeharizadeh, D.A. Schneider,
A Bricker and H.I. Hsiao et al., 1990. The GAMMA
database machine project. [IEEE. Trans. Knowledge
Data Eng., 2: 44-62.

DeWitt, D.J. and I. Gray, 1992. Parallel database systems:
The futwe of high-performance database systems.
Commun. ACM., 35: 85-98.

Englert, 5., R. Glasstone and W. Hasan, 1995. Parallelism
and 1its price: A case study of nonstop SQL/MP.
ACM SIGMOD Record, 24: 61-71.

990

Ghandeharizaeh, 3., D.J. DeWitt and W. Qureshi, 1992. A
performance analysis of alternative multi-attribute
declustering strategies. Proceedings of the 1992
ACM SIGMOD International Conference on
Management of Data. Tune 02-05, ACM Press, New
York, pp: 29-38.

Graefe, G., 1990. Encapsulation of parallelism in the
volcano query processing systems. Proceedings of
ACM SIGMOD International Conference Atlantic
City. June 1990, ACM Press, NJ, USA, pp: 102-111.

Hou, W.C. and T. Kindred, 1993. Implementation and
evaluation of relational algebra operations on the
connection machine. Proceedings of the 2nd
International Conference on Parallel and Distributed
Information Systems. January 20-22, San Diego, CA,
USA, pp: 251-254.

Hsiao, HI. and D.J. DeWitt, 1993. A performance study of
three high availability data replication strategies.
Distributed Parallel Databases, 1: 53-80.

Hua, K.A. and C. Lee, 1992. Handling data skew in
multiprocessor database computer using partition
tumng. Proceedings of the 17th International
Conference on VLDB. 1992 Morgan Kaufimann,
pp: 525-535.

Lakshmi, M.S., M. Seetha and P.S. Yu, 2000. Effect of

skew on join performance in parallel architectures.

Proceedings of the 1st International Symposium on

Databases in Parallel and Distributed Systems.

December 05-07, IEEE Computer Society Press Los

Alamitos, CA, USA, pp: 107-120.

T, J. Srivastava and D. Rotem, 1992. CDM: A

multidimensional declustering method for database

systems. Proceedings of the 18th VLDB Conference.

August 23-27, Morgan Kaufmann, San Francisco,

CA, USA, pp: 3-14.

L1, K. and P. Hudak, 1989. Memory coherence in shared
virtual memory systems. ACM TOCS, 7: 321-359.

Lone, R., I.]. Daudenarde, G. Hallmark, J. Stamos and
H. Young, 1989. Adding intra-parallelism to an
existng DBMS: Early experience. IEEE. Bull
Database Eng., 12: 2-8.

Markatos, E.P. and T. LeBlanc, 1992. L.oad balancing vs.
locality management. in shared-memory
multiprocessors. Proceedings of the International
Conference On Parallel Processing, 1992 CRC Press,
pp: 258-267.

Martin, T.P., P.A. Larson and V. Deaspande, 1994. Parallel
hash-based join algorithms for a shared-everything
environment. TEEE Trans. Knowledge Data Eng.,
6: 750-763.

Mohan, C. and I. Narang, 1992. Efficient locking and
caching of data in the multisystem shared disks
transaction environment. Lecture Notes Comput. Sci.
Springer, 580: 453-468.

Li

Inform. Technol. J., 7 (7): 983-991, 2008

Norman, M.G., T. Zurek and P. Thanisch, 1996. Much Ado
about Shared-Nothing. ACM SIGMOD Record,
25:16-21.

Omiecinski, E. and E. Lin, 1992. The adaptive hash join
algorithm for a hypercube multicomputer. TEEE.
Trans. Parallel Distributed Syst., 3: 334-349.

Pirahesh, H., C. Mohan, J. Cheng, T.S. Liuand P. Selinger,
1990. Parallelism in relational database systems:
Architectural issues and design approaches.
Proceedings of the 2nd International Symposium on
Databases in Parallel and Distributed Systems. July
2-4, ACM Press, pp: 4-29.

Rahm, E., 1993, Parallel query processing in shared disk
database systems. ACM SIGMOD Record, 22: 32-37.

Shatdal, A. and I.F. Naughton, 1993. Usmng shared virtual
memory for parallel join processing. Proceedings of
the 1993 ACM SIGMOD. May 26-28, ACM Press,
USA, pp: 119-128.

Sokolinsky, L.B., 1999. Operating system support for a
parallel DBMS with a hierarchical shared-nothing
architectre. Proceedings of the 3rd Hast European
Conference Advances in Databases and Information
Systemns (ADBIS'99) (Maribor, Slovenia, 1999).
September 13-16, Maribor: Institute of Informatics,
Springer, pp: 38-45.

991

Stonebraker, M., 1986. The case for shared nothing.
Database Eng. Bull,, 9: 4-9.

Stonebraker, M., R. Katz, D. Patterson and J. Qusterhout,
1988. The Design of XPRS. Proceedings of 14th
International Conference on Very Large Data Bases.
September 1988, Morgan Kaufmann, T.os Angeles,
pp: 318-330.

Valduriez, P., 1993. Parallel database systems: The case
for shared-something. Proceedings of the 9th
International Conference on Data Engineering. April
19-23, IEEE Comput. Soc, Vienna, Austria
pp: 460-465.

Wilschut, AN., J. Flokstra and P.M.G. Apers, 1992
Parallelism in a main-memory DBMS: The
performance of PRISMA/DB. Proceedings of the 18th
VLDB Conference. August 1992, Morgan Kaufmamn,
pp: 521-532.

Yannis, EI., TN. Raymond, 5. Kyuseok and K.5. Timos,
1992, Parametric query optimization. pp: 103-114

Zhiyong, L., L. Xiacbo and Y. Jia-Huai, 1992. On storage
schemes for parallel array access. Proceedings of
the 6th International Conference on
Supercomputing. July 19-24, ACM Press, New York,
USA, pp: 282-291.

	ITJ.pdf
	Page 1

