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Abstract: An attempt has been made in this study to find globally optimal cluster centers for multispectral
images with Enhanced Genetic k-Means algorithm. The 1dea is to avoid the expensive crossover or fitness to
produce valid clusters in pure GA and to improve the convergence time. The drawback of using pure GA in this
problem is the usage of an expensive crossover or fitness to produce valid clusters (Non-empty clusters). To
circumvent the disadvantage of GA, hybridization of GA with k-Means as Genetic k-Means 1s already proposed.
This Genetic k-Means Algorithm (GKA) always finds the globally optimal cluster centers but the drawback 1s
the usage of an expensive fitness function which involves o truncation. The Enhanced GKA alleviates the
problem by using a simple fitness function with an incremental factor. A k-Means operator (one-step of
k-Means algorithm) used in GKA as a search operator 1s adopted 1n this study. In Enhanced GKA the mutation
mvolves less computation than the mutation involved in GKA. In order to avoid the mvalid clusters formed
during the iterations the empty clusters are converted into singleton cluster by adding a randomly selected data
item until none of the cluster is empty. The results show that the proposed algorithm converges to the global
optimum 1n fewer mumbers of generations than conventional GA and also found to consume less computational
complexity than GKA. It proves to be an effective clustering algorithm for multispectral images.
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INTRODUCTION

Evolutionary algorithms are very good m search.
They can even perform parallel searches, i1 complex
search spaces. A popular evolutionary algorithm 1s
Genetic algorithm, which 1s well known for its robustness
even in large search spaces (Fogel et al., 1994). In this
study an enhanced GKA, which 1s a modification of GA
and an enhancement of GKA, 1s proposed.

Clustering has been used m various areas such as
psychology, biology, medicine ete. Cluster analysis
organizes the mput into groups such that the items within
the group are more similar to each other than the items
belonging to different groups (Jain and Dubes, 1989).
There are various types of clustering algorithms. They are
mainly classified as partitional clustering algorithms and
hierarchical clustering algonthms. In this study, partitional
clustering has been given focus (Jonmes and Betramo,
1991). The objective here 1s to partition the data to
specified number of clusters such that it minimizes the
Total Within Cluster Variation (TWCV). TWCV 1s given
by the sum of distances between all data item and their
respective cluster center.

In general, partitional clustering algorithms like
Hill-Climbing will settle at the local optimum. Cne of the

iterative Hill-Climbing algorithms, k-Means which 1s well
known for its simplicity also suffers from the above
problem. Stochastic approaches like simulated annealing
(Selim and Alsultan, 1991; Kleinand Dubes, 1989), genetic
algorithm are very good n finding the global optima but
it takes time to converge to the global optima due to its
expensive crossover. To obtain faster convergence as
well as to retain the simplicity of the k-Means, the two
algorithms have been combined (ie.,) the crossover
operator in conventional GA is replaced by k-Mean
operator (one step k-Mean algorithm)) and this has been
used n GK A (Babu and Murty, 1994).

The hybridization of GA with k-Means yields a
greater benefit over conventional GA, but it uses an
expensive fitness calculation. The fitness calculation
mnvolves the o-truncation, which in turn consumes the
calculation of average and standard deviation. As a result,
there is an increase in computational complexity. The
study overwhelms the problem by using a simple
fitness calculation with the aid of an meremental factor.
Enhanced GKA also replaces the mutation by a simple
formula, which also satisfies the intended purpose of
mutation. As a result this Enhanced GKA has an edge
over the GKA.
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GENETIC k-MEANS ALGORITHM

The hybrid algorithm is formed by the fusion of GA a
stochastic approach, with k-Means an attractive and an
iterative algorithm (Krishna and Murty, 1999). Both
algorithms are chosen for fusion, since the resulting
algorithm overcomes individual obstacles found during
convergence towards global optima. The resulting hybrid
algorithm is called the genetic k-Means algorithm (GKA).
The k-Means operator, one step of k-Means algorithm, 1s
used in GKA instead of the crossover operator used in
conventional GA’s. In GKA a distance based mutation 1s
used in which a randomly selected allele is flipped. Thus,
GKA combines the simplicity of the k-Means algorithm
and the robust nature of GA’s. However the fitness
function used 18 simpler than conventional GA, it 1s also
still an overhead as it involved o- truncation as a part of
it, which in turn depends on the average and standard
deviation. This study suggests a simple fitness function
compared to the fitness function mvolved in GKA. Here
the probability of mutation calculation is also simplified
which n turn reduces the time needed for convergence.
Thereby this process proves to be better than GKA in
terms of computational complexity. It 13 found that
Enhanced GKA always finds the global optima. Tt is found
to converge to the global optimum with 100% accuracy
and hence it is proved that Enhanced GKA has less
computational complexity than the GKA.

ENHANCED GENETIC k-MEANS ALGORITHM

Similar to GKA and GA, Enhanced GKA also works
on population of encoded string called as chromosome.
The chromosomes are initialized randomly at the initial
stage. Then performing the genetic operations on the
chromosomes until termination condition 1s reached
evolves the next generation. Various genetic operators,
which are listed below, are acted on each chromeoeseme 1n
each generation.

Let there be n input data items and the objective 1s to
find k cluster centers such that the cluster centers
minimizes the TWCV.

Coding: A simplest and an understandable way of coding
is to consider a chromosome of length n and allow each
allele to have value from {1, 2...... k}. Here each allele
refers to a data item corresponding to the position on the
chromosome and its value represents the value of the
cluster to which it belongs. This type of coding is called
as string-of-group-numbers encoding.

Initialization: In the imtial population the chromosome 1s
assigned randomly such that each data point belongs to

555

any one of the clusters. But however even when one of
the cluster is empty illegal chromosomes may result (i.e.,
chromosome having empty clusters). To avoid empty
clusters the data items are split into two parts with number
of elements greater than or equal to k in first part so as to
initialize at least one pixel to each of the k-clusters. The
first part of the data item 1s equally distributed to every
cluster. The other data part 13 imtialized randomly to
anyone of the clusters.

Fitness calculation: High fitness value 1s assigned to a
chromosome with less Total Within Cluster Vanation.
Since a high value of fitness 1s assigned to a chromosome
of less TWCYV it is a minimization problem. To convert
minimization problem into maximization problem the
inverse of TWCV is considered as the fitness function.

fli) = 1/2":

j=t

(CON +difference of allele j in chromosome (1)

1 from the corresponding cluster centre)

If the difference is small, then the chromosome will
have a high fitness value. In Eq. 1 the CON is a constant
whose value 1s 1. It is inserted to handle the exceptional
cases where the TWCV 1s zero. If TWCV = 0 then n the
absence of CON, fitness will be equal to infinity. The
fitness formula used is less expensive in terms of
computation than the fitness used in GKA. The usage of
o-truncation in GKA the computational
complexity. But Eq. 1 does not involve such expensive
computation. Since the fitness calculation is used in every

increases

generation and for every chromosome, the reduction in
complexity of fitness function will have a greater impact
on time complexity (Table 1).

Selection: The objective 1s to find the globally optimized
cluster centers and thereby reduce the TWCV. Hence the
chromosome with high fitness based on Eq. 1 is selected
and placed on the mating pool. The chromosomes are
sorted based on the fitness wvalue and then the
chromosome with worst fitness is truncated and the rest
are retained. Finally the chromosome with best fitness
value is duplicated to maintain the population size.

k-mean operator (KMO): Instead of genetic crossover
operator, k-Mean Operator (one step of k-Mean algorithm )
adopted from GKA 1is used, because crossover is
expensive to produce valid chromosome (1.e., chromosome
with nonempty clusters) and also leads to the formation
of invalid chromosomes as shown in Fig. 1.

The following two steps constitute KMO:
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Table 1: Fitness value calculated using Fq. 1

Generation

No. 1 2 3 4 5 [\ 19 20

1 0.0016 0.0014 0.0015 0.0014 0.0014 0.0015 0.0018 0.0013

2 0.0025 0.0018 0.0025 0.0018 0.0024 0.0024 0.0018 0.0044

3 0.0012 0.0017 0.0029 0.0017 0.002 0.0027 0.0018 0.0044

100 0.0099 0.0009 0.0099 0.0099 0.0099 0.0009 0.0099 0.0009
Parent chromosome

HEHEEENEAHEE

1

e R

v

Crossover point

4

3

HEESEEEEEENEE

’ |

1HEHENEEREEE

Child chromosome 1:

HEEHHESNESENNOEEEGNENEEEEEE

Child chromosome 2:
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Child chromosome 1 is valid and child chremosome 2 is invalid {5th cluster is empty)

Fig. 1: Single point crossover

The cluster center is calculated for every cluster by
taking the average of data points inside that cluster.
Reassign each data point to the cluster such that the
distance from the center to that
corresponding data peint is minimum compared to

cluster
other cluster centers.

But the drawback of these sunple operations is that
it may result in empty clusters. To overcome this problem,
whenever an empty cluster is found after KMO a random
data pomt 1s just added to that empty cluster and it 1is
removed from the cluster to which it actually belongs. It
is iterated until none of the clusters are empty.

K
Sum of Distance = >’ |C; - P,| (2)

1=1

WhereIT={1,2.......n}

Here P, is the pixel j in ith class and C; is the center of
the ith class. The empty clusters are identified using
Eq. 2. If the sum of distance is zero then it corresponds
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to empty cluster. The identification of empty clusters
using Eq. 2 works well when the input data item contains
non-duplicate values. But however if the input has
duplicate values then the data point may overlap with
cluster center and m such case the nonempty cluster may
also resemble an empty cluster.

Mutation: The mutation is used to avoid local optimum
and to make the cluster center to propagate toward the
global optimum. Due to the random nature of initialization,
cluster center will be improper during the initial stages and
it requires at least 10 generations to be settled. Tt is
performed only after 10th generation.

D, (X)) = (abs (X}, - C) - tot_min)
P.(X) =0ifD,=0
P.(X;) =1 otherwise

3

Where tot min = minimum difference between the
allele and the k cluster centers, P, is the probability of
mutation and D, 1s the distance parameter.
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Fig. 2: Randomly mitialized cluster

The probability of mutation 1s calculated according to
above equation and if P, is 1, then the allele value
mapping to the cluster center is randomly initialized to
some other cluster, which otherwise is left as such. As a
result of mutation, empty clusters may form if mutation
operation is done on a singleton cluster. To avoid the
problem of formation of empty clusters, mutation is
performed on an allele only if the sum of difference of all
the data pomnts and the corresponding cluster center of
the mutated chromosome 1s non-zero. Otherwise another
random allele 13 generated and it 18 mutated until a valid
mutated child (all clusters are nonempty) 1s formed.

All the above steps are performed on the given data
set. The steps from 3 to 6 are repeated over each
generation until the termination condition is reached.
Generally, there are two methods of termination. One
method is to terminate if required number of generations
are completed and another way is to stop when the cluster
centers remain constant between iterations without any
change. The former approach 1s used in this study. The
complete workflow of the process used 1s shown m Fig. 2.

EXPERIMENTAL STUDY

For the experimental purpose of the Enhanced GKA,
the following 5x5 array is considered, which easily
explains the procedure.

105 101 86 83 95
107 99 98 78 98
102 130 142 154 98
131 127 144 139 112
121 134 131 93 82

In this experiment, Enhanced GKA tries to find k
globally optimum cluster centers such that it mimmizes
TWCV. Here the value of k 1s assigned as 5.

Coding: In this study, chromosome length is 25 which
corresponds to the number of pixels in the above matrix.

Here each allele corresponds to a pixel of the respective
location and its value maps to the cluster to which it
belongs. The 5 centers are randomly initialized to anyone
of the 25 pixels shown above. These randomly generated
clusters are made to converge towards the globally
optimum cluster centers as a result of GKA. In this
experiment the randomly generated centers are cenl = 107,
cen2 = 98, cen3 = 78, cend = 121, cend = 82. The
population size 1s made equal to 20.

Initialization: In the imtialization stage, population size 1s
fixed. Here each allele 1s randomly imtialized to anyone of
the cluster. Due to the random nature of mitialization,
invalid chromosomes (non empty clusters) may result. To
overwhelm the invalid chromosomes, 25 pixels are split
into two parts of size 15 and 10. The former part of pixels
is equally distributed into 5 clusters as shown in Fig. 2.
As a consequence, none of the clusters remain empty.
The latter part of the pixels is randomly distributed to
anyone of the clusters. Thus as a result of the
initialization stage, a fixed set (population size) of valid
chromosome 1s generated.

Fitness evaluation: The Fitness of the chromosome
represents how much it i1s fit to suwvive in the next
generation. The fitness of all the chromosomes are
calculated using Eq. 1 which is shown in Table 3. Then
the fitness values are sorted. For illustration purpose,
consider the iterationl shown in Table 3. The
chromosome 19 with the fitness value 0.0018 is the best
chromosome and the chromosome 18 with fitness 0.0012
15 the worst chromosome. The accuracy 1s lower in 1st
generation due to imtial random imtialization As
generations evolve, the fitness value of the chromosome
increases finally to 0.0099 m this experiment.

Selection: Based on fitness value evaluated the selection
operation is performed such that Enhanced GKA retains
the best chromosome. Consider the row 1 of Table 3, the
chromosome 19 with fitness of 0.0018 corresponds to the
best chromosome ingeneration 1 and the chromosome
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Fig. 3. k- mean operator

18 with the fitness of 0.0012 corresponds to worst
chromosome. Based on the selection methodology
adopted in this study the 18th chromosome is truncated
and the rest of the chromosomes are retained. Finally in
order to maintain the population size the chromosome 19
which 1s the best chromosome in generation 1 1s
duplicated. The selected chromosomes are placed in the
mating pool.

k-mean operator (KMO): The KMO is applied to every
chromosome placed on the mating pool. In the step 1 of
this process using the value of the allele and its location
on the chromosome, the pixels are categorized nto
respective clusters as shown in Fig. 3 and then new
cluster center is formed for each cluster by computing
average of the pixels. Tt is illustrated in Fig. 3a. Then
based on cluster centers each pixel 1s reassigned to the
nearest cluster center as shown in Fig. 3b. If empty
clusters are formed then a random pixel m the range
{1, 2.....25} 1s generated and added to the empty cluster,
thereby converting empty cluster into singleton cluster.

Moutation: It is performed only after the tenth generation.
The probability of mutation is calculated according to
Eq. 3. The allele for mutation is selected by generating a
random mumber between[1, 2...25]. Then the random

Table 2: Cluster centers with mutation every 10 generation

Generation Center Center Center Center Center
No. 1 2 3 4 5

10 822500 974286 104.6007 116.5000 135.8889
20 82.2500  98.0000 108.0000 129.0000 144.7500
30 822500  98.0000 108.0000 129.0000 144.7500
40 822500  98.0000 106.0000 116.5000 136.8889
50 82.2500 990000 1165000 130.6000 144.7500
60 82,2500 98.0000 108.0000 129.0000 144.7500
70 82.2500 98.0000 106.0000 116.5000 136.8889
80 82.2500  98.0000 106.0000 116.5000 136.8889
90 82.2500 990000 1165000 130.6000 144.7500
100 82.2500 940000 1001429 113.3333 136.8889
Table 3: Cluster centers without mutation every 10 generation

Generation Center Center Center Center Center
No. 1 2 3 4 5

10 822500  99.6000 116.5000 130.6000 144.7500
20 82.2500  98.0000 108.0000 129.0000 144.7500
30 822500 90,8333 103.7500 116.5000 135.88889
40 822500 974286 104.6007 116.5000 135.8889
50 822500  98.0000 106.0000 116.5000 136.8889
60 822500 987778 113.3333 132.0000 146.6667
70 822500  98.0000 108.0000 129.0000 144.7500
80 822500 940000 100.1429 1133333 135.8889
90 822500 974286 104.6007 116.5000 135.8889
100 822500 980000 106.0000 116.5000 136.8889

allele is flipped to the value of another cluster center if
P,, = 1, which otherwise is left as such. As a result of
mutation, if empty cluster arises then mutation 1s not
performed on that allele. Another random allele [1, 2... 25]
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Fig. 5: Plot of fitness against number of generations

is tried for mutation. The plot of fitness against number of
generations in (Fig. 5) reveals that mutation makes cluster
centers to converge more quickly to global optima. The
above steps are iterated for 100 generations. Then finally
the Enhanced GKA was found to converge to the global
optimum. The cluster centers for the input 5x5 matrix
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obtained are- 82.25, 94, 100.1429, 113.3333 and 136.889.
The values of cluster center with and without mutation are
listed 1 Table 2 and 3, respectively. A comparative plot of
the fitness is showed in Fig. 5.

RESULTS AND DISCUSSION

The experimental data 15 a multispectral image
consisting of three categories: vegetation area, water
body and wasteland as shown m Fig. 7. Based on the
above algorithm, three random values are generated and
initialized as cluster centers. Then the above operators are
applied in an iterative manner. The final cluster centers are
found to converge to global optimum. The clustered
image 18 shown in Fig. 8. It proves to have 100% accuracy
with cluster centers 51, 103 and 182 and the time elapsed
15 15.893 sec. A plot between number of generations and
computational time in Fig. 6 shows that the enhanced
GKA converges to global optimum in less time than GKA.
Future research interest mncludes modifying the Eq. 2 used
in Enhanced GKA to find the empty cluster. Since the
equation is based on difference, the redundant data will
overlap and pretend as an empty cluster.
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Fig. 6: Plot of number of generations vs computational
time

Fig. 7: Original image

Fig. 8: Clustered image

REFERENCES

Babu, G.P. and M.N. Murty, 1993. A near-optimal initial
seed selection in K-means algorithm using a genetic
algorithm. Pattern Recognit. Lett., 14: 763-769.

Babu, G.P. and M.N. Murty, 1994. Simulated annealing for
gelecting initial seeds in the k-means algorithm. Ind.
1. Pure Applied Math., 25: 85-94,.

Fogel, D.B., 1994. An introduction to simulated
evolutionary optimization. IEEE Trans. Neural
Networks, 5: 3-14.

Jain, A.K. and Dubes, R.C. 1989. Algorithms for
Clustering Data. Englewood Cliffs, NT: Prentice-Hall.

Jones, D.R. and M.A. Beltramo, 1991. Solving partitioning
problems with genetic algorithms. In: Proc. 4th Int.
Conf. Genetic Algorithms. San Mateo, CA: Morgan
Kaufman.

Klein, RW. and R.C. Dubes, 1989. Experiments in
projection and clustering by simulated annealing.
Pattern Recognit., 22: 213-220.

Krishna, K. and M. Murty, 1999. Genetic K-means
algorithm. TEEE Transactions on Systems, Man and
Cybermetics-Part B: Cybernetics, 29: 433-439.

Selim, 5.Z. and K. Alsultan, 1991. A simulated annealing
algorithm for the clustering problem. Pattern
Recognit., 10: 1003-1008.



	ITJ.pdf
	Page 1


