Malignant Fibrous Histiocytoma Arising from Nasal Cavity

1Mohammad Ali Damghani and 2Mohammad Hasan Larizadeh

The present aim is to report a case of malignant fibrous histiocytoma of the nasal cavity in a 64-year-old woman. This is a rare entity in the head and neck region. The patient referred with nasal obstruction and underwent wide surgical resection with negative margin. He is well with no evidence of disease for 36 months after surgery.

Key words: Soft tissue sarcoma, malignant fibrous histiocytoma, head and neck, radiotherapy

1Department of Otolaryngology,
2Department of Radiation Oncology, Shafa Hospital, Kerman University of Medical Sciences and Health Services, Kerman, Iran
INTRODUCTION

A 64-year old woman presented with a 2 month history of nasal obstruction and one month history of mild nasal bleeding. Physical examination revealed a non-tender mass in left nasal cavity with pink to red color and ulceration and crust over its surface. Pressure effect of this mass has been seen externally. Chest x-ray was normal. Computed tomographic examination demonstrated a soft tissue density in left nasal cavity without bone or cartilage invasion (Fig. 1). Initial clinical diagnosis was pyogenic granuloma. With this diagnosis, mass excision was done under general anesthesia, but pathologic study showed the storiform-pleomorphic type of malignant fibrous histiocytoma (Fig. 2). She underwent re-operation for obtaining safe margins. There has been no evidence of local recurrence or distant metastasis for 36 months following the final surgery.

Soft Tissue Sarcomas (STS) are rare solid tumors accounting for less than 1% of all malignancies and are very unusual in the head and neck region (Pandey et al., 2003). Three percent to 10% of all MFH occur in the head and neck and MFH constitutes approximately 5% of head and neck sarcomas (Leon and Amal, 1988; Philip et al., 2003). In a patients group reported by Sabesan and his colleagues, nasal cavity accounted for 3 of 54 MFH (5%), arisen from head and neck region (Sabesan et al., 2006). In another series, ethmoid sinus and nasal cavity accounted for 1 of 12 MFH, arisen from head and neck (Leon and Amal, 1988). Another report mentioned that 3 out of 22 cases (13.6%) of STS of the head and neck were MFH. However, none of the reported cases occurred in nasal cavity (Pandey et al., 2003). For patient with resectable STS, wide local excision with optimal margins of normal tissue represents the primary modality of treatment (Philip et al., 2003; Nicolas et al., 2004). In most sarcomas involving the nose, the surgical procedures employed do not significantly differ from those used for other malignancies of this region.

Rhinectomy with palatotomy and possibly maxillectomy/ethmoidectomy may be required for obtaining wide margin (Philip et al., 2003). Unlike extremity sarcomas, head and neck sarcomas usually are not amenable to wide resection with generous margins. The use of adjuvant radiation is more liberal in this site. Postoperative radiotherapy may be used in the following conditions: high-grade lesions and/or positive surgical margins, lesions larger than 5 cm and recurrent lesions (Philip et al., 2003). Little is known about prognostic factors and treatment results of MFHs of the head and neck (Nicolas et al., 2004). Literature data shows that 20 to 42% of individuals with MFHs of the head and neck will experience local recurrence due to difficulties to obtain wide resection. At least 25 to 35% of these patients will develop systemic metastasis, most often to the lung. The overall 5-year survival has been reported to be between 25 and 60% (Leon and Amal, 1988; Sabesan et al., 2006). We did not use adjuvant treatment in this case and she is alive with no evidence of recurrence after 36 months from the last surgery.

Fig. 1: Preoperative coronal CT Scan showing nasal cavity mass

Fig. 2: MFH, plump and spindle cells arranged in short fascicles in storiform pattern around small vessels. (H&E, x100)

REFERENCES


